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SUMMARY 
Electric potentials and magnetic fields generated by ensembles of synchronously active 
neurons in response to external stimuli provide information essential to understanding the 
processes underlying cognitive and sensorimotor activity.  Interpreting recordings of 
these potentials and fields is difficult as each detector records signals simultaneously 
generated by various regions throughout the brain.  We introduce the differentially 
Variable Component Analysis (dVCA) algorithm, which relies on trial-to-trial variability 
in response amplitude and latency to identify multiple components.  Using simulations 
we evaluate the importance of response variability to component identification, the 
robustness of dVCA to noise, and its ability to characterize single-trial data.  Finally, we 
evaluate the technique using visually evoked field potentials recorded at incremental 
depths across the layers of cortical area V1, in an awake, behaving macaque monkey.
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INTRODUCTION 
The field of neuroelectrophysiology relies on the analysis of electric potentials or 
magnetic fields produced by the brain in response to sensory stimulation, or in 
association with its cognitive and/or motor operations.  These signals arise from 
transmembrane current flow produced by multiple ensembles of synchronously firing 
neurons.  Far from being independent, these neural ensembles, also referred to as 
generators or sources, are often dynamically coupled in unknown ways that are of interest 
to the experimenter.  Unfortunately, recording channels such as electrodes in 
electroencephalography (EEG) and superconducting quantum interference devices 
(SQUIDs) in magnetoencephalography (MEG) record linear mixtures of the activity from 
these sources in addition to ongoing background activity and sensor noise.  Thus, the 
individual responses of each source are mixed within the recorded signal making it 
difficult to identify them and study their dynamical interactions.  Furthermore, it is 
standard practice to enhance the signal-to-noise ratio by averaging event-related 
potentials (ERPs) over a number of experimental trials.  However, implicit in this 
construction is the assumption that the evoked waveform is constant over trials and that 
any variability represents noise.  In this practice, the possibility of assessing trial-
dependent effects in the data is sacrificed.   

The last decade has seen great developments in linear blind source separation 
(BSS) and independent component analysis (ICA) techniques, such as Infomax ICA (Bell 
& Sejnowski, 1995), FastICA (Hyvärinen & Oja, 1997), and second-order blind 
identification (SOBI) (Belouchrani et al., 1993).  These algorithms have been useful in 
identifying sources in EEG and MEG signals using both ensemble-averaged data 
(Makeig et al., 1997; Särelä et al., 1998; Vigário et al., 1999) and single trials (Jung et al., 
1999; Cao et al., 2000; Makeig et al., 2002; Tang et al., 2002).  However, with the 
exception of SOBI, the general assumption that the ERP sources are independent is 
physiologically implausible.  It is hard to argue that activity produced by two areas, such 
as V1 and V4, are independent when the areas are clearly structurally and functionally 
interconnected.  Most important, by assuming independence of the sources, the 
experimenter assumes away one of the most interesting and important aspects of the 
behavior of active neural ensembles in the brain: the nature of their dynamical 
interactions.   

In this paper we describe a more realistic model of the evoked response, which 
explicitly acknowledges trial-to-trial amplitude and latency variability in the evoked 
responses generated by each active source.  Using this more realistic model of the ERP 
we will derive the differentially Variable Component Analysis (dVCA) algorithm, and 
demonstrate how different variability patterns in neural ensemble activity can be used to 
separate and identify their component signals.  Using simulations, we will evaluate the 
ability of dVCA to characterize single-trial data, as well as its robustness to noise.  Last, 
we will demonstrate how to use dVCA by analyzing visual-evoked field potentials 
recorded intracortically in macaque V1 using a linear multi-electrode array.  Throughout 
this paper we will demonstrate that this approach allows us to: (1) more accurately 
account for observed trial-to-trial variability, (2) utilize the differential variation in the 
amplitudes and latencies to separate and identify sources, (3) avoid enforcing statistical 
independence of the sources, and (4) more accurately estimate the ongoing background 
activity. 
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MODELING EVOKED RESPONSES 
Trial-to-trial variability of evoked responses can conceivably take many forms: latency 
shifts, amplitude variation, and even waveshape changes.  In our experience, much of the 
observed variability can be described by amplitude and latency variations of a stereotypic 
response waveshape (Truccolo et al., 2002).  For this reason, we model the response 
evoked from a single neural ensemble by assuming that the signal possesses a stereotypic 
waveshape that can vary in amplitude and onset latency from trial to trial.  We write the 
response evoked in a given trial mathematically as )( τα −ts , where the function )(⋅s  
represents the waveshape of the response as a function of elapsed time t , α  represents 
the trial-specific amplitude scaling factor of the response, and τ  represents the trial-
specific onset latency shift.  Furthermore, when multiple neural ensembles are engaged in 
the response to a stimulus, the activity of each ensemble is represented in the model as a 
separate waveform with a distinct trial-specific amplitude and latency shift.  It is 
important to note that by modeling both the waveshape and its amplitude and latency, 
there is degeneracy in the model as an overall change in amplitude scale or latency shift 
can be described either by the amplitude and latency parameters or by the overall scale 
and shift of the waveshape.  To eliminate this degeneracy, we take as a convention that 
the ensemble average amplitude scaling factor of the response over the recorded trials is 
unity, 1=><α , and the ensemble average latency shift is zero, 0=>< τ .  
 In many experimental paradigms, investigators use several detectors positioned at 
different locations to measure the evoked responses of neural ensembles.  The degree to 
which a detector records a signal evoked by a particular source depends on many factors 
including the relative position and orientation of the source relative to the detector.  To 
describe this source-detector coupling, we introduce a coupling matrix C , where the 
matrix element C  describes the degree to which the mmn

th detector detects the nth source.  
This coupling matrix is known as the mixing matrix in the source separation literature 
and as the lead-field matrix in electrophysiology. 

During the course of an experiment the investigator records responses to multiple 
presentations of a stimulus.  Each presentation is typically called a trial.  For the rth 
recorded trial, we model the data x(t) recorded by the mth detector in component form as 

( )∑
=

+−=
N

n
mrnrnnrmnmr ttsCtx

1

)()(ˆ ητα ,    (1) 

where  describes our model of the recorded data , n indexes the N neural 
sources activated by stimulus presentation,  is the coupling between the m

)(ˆ txmr )(txmr

mnC th detector 
and the nth source, nrα  is the amplitude scale of the nth source during the rth trial, nrτ  is 
the latency shift of the nth source during the rth trial, ( )⋅ns  is the waveshape of the nth 
source, and )(tmrη  is the un-modeled part of the data recorded in the mth detector during 
the rth trial.  The un-modeled part of the data record is typically a combination of the 
recorded background activity along with any noise in the detector.  For simplicity, we 
assume that )(tmrη  has zero mean.  Thus (1) describes the data recorded in a given 
detector during a given trial as a sum of the signals generated by each of the N neural 
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sources appropriately scaled in amplitude and shifted in latency for that trial and also 
scaled according to the coupling between each source and that detector plus the signals 
that we do not yet understand or care to understand.  We call (1) the multiple component 
event-related potential (mcERP) model of evoked activity. 

By adopting the mcERP model of the evoked responses, we implicitly adopt a 
well-defined set of characteristics capable of describing a neural source.  The term 
component refers to the stereotypic waveshape describing the temporal activation pattern 
of a particular neural source.  As no information regarding the spatial locations or 
distributions of the neural sources has gone into the model, this model does not 
distinguish between two spatially distinct groups of neurons that produce the same 
stereotypic waveshape varying identically with latency and proportionally in amplitude.  
However, in such a situation, examination of the estimated coupling matrix would reveal 
two spatially distinct sources if there are detectors positioned within the proximity of 
each source.  The major advantage obtained by estimating the coupling matrix is that 
practical experience in conjunction with previously obtained physiological or anatomical 
data suggesting source distributions can be utilized to independently evaluate the 
solutions obtained with this technique.  The disadvantage, aside from withholding 
information from the algorithm, is that there remain two degeneracies in the model.  First, 
there is no specified order to the sources.  Second, there is no specified scale for the 
coupling matrix; one could halve the coupling matrix elements while doubling the 
magnitude of the source waveshapes and obtain an equally valid solution.  These 
degeneracies, which are present in every other linear source separation algorithm, pose no 
difficulties to the interpretation of the results.  In our implementation we have chosen to 
normalize the columns of the coupling matrix so that the maximum value is equal to one.  
However, it should be noted that this scaling degeneracy could be remedied by adopting a 
physical model of the source currents (Knuth & Vaughan, 1998). 

One last notable benefit of the mcERP model is that no component waveform is 
required to be present in every trial.  In other words, a single-trial amplitude of zero is 
allowable for any component.  By not assuming a priori that identical neural processes 
are active during every trial of the experiment, one is able to investigate the possibility 
that different processing strategies are used during the course of the recordings. 
 
ALGORITHM DEVELOPMENT 
Bayes' Theorem is the natural starting point for explaining the dVCA algorithm because 
it allows one to describe the probability of the model in terms of the likelihood of the data 
and the prior probability of the model parameters 

( ) ( ) ( )
( )Idatap

ImodelpImodeldatap
Idatamodelp

|
|,|

,| = ,  (2) 

where I represents any prior information one may have about the physical situation.  The 
probability on the left-hand side of (2) is referred to as the posterior probability.  It 
represents the probability that a given set of hypothesized values of the model parameters 
accurately describes the physical situation in which the data were collected.  The first 
term in the numerator on the right-hand side is the likelihood of the data given the model.   
It describes the degree of accuracy with which we believe the model can predict the data.  
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The second term in the numerator is the prior probability of the model, or the prior.  This 
prior describes the degree to which we believe the hypothesized values of the model 
parameters to be correct based only on our prior information about the problem.  The 
term in the denominator is called the evidence and as we will see in this problem, it acts 
only as a normalization factor.  It is through the assignment of the likelihood and the 
priors that we express all of our knowledge about the particular source separation 
problem.  Bayes' Theorem can be viewed as describing how one's prior probability, 

, is modified by the acquisition of some new information in the form of data. ( Imodelp | )
 To apply this theorem to our problem, we consider the change in our knowledge 
about the model with the acquisition of new data, which consists of the set of recorded 
data x(t) from M detectors over the course of R trials.  In this case, Bayes' Theorem can 
be written as 

( ) ( ) ( )
( )Itp

I,,t,pI,,,t,tpIttp
|)(

|)()(|)(),(|,),(,
x

ταsCταsCxxταsC = ,   (3) 

where boldface symbols represent the entire set of parameters of each type in the mcERP 
model, eg. { R }ααα .,..,, 21=α .  The most probable set of model parameters maximizes 
the probability in (3), and thus in practice the equation can be expressed as a 
proportionality with the inverse of the evidence ( )Itp |)(x  as the implicit proportionality 
constant.  Equation (3) then becomes 

( ) ( ) ( )I,,t,pI,,,t,tpIttp |)()(|)(),(|,),(, ταsCταsCxxταsC ∝ . (4) 

 For simplicity, the joint prior can be factored into four terms each describing what 
we know about the source-detector coupling, the source waveshapes, the single-trial 
amplitudes and the single-trial latency offsets, 

( ) ( ) ( ) ( ) ( ) ( IpIpItpIpI,,,t,tpIttp |||)(|)(|)(),(|,),(, ταsCταsCxxταsC ∝ ).   (5) 

For the amplitude and latency priors, ( )Ip |α  and ( )Ip |τ  respectively, we assign 
uniform densities with appropriate cutoffs denoting a range of physiologically realizable 
values.  Note that a joint uniform density ( )Ip |, τα  can always be factored in this way.  
As the amplitude and latency priors are each represented by a uniform density, we can 
absorb those two factors into the implicit proportionality constant.  
 Our derivation continues by utilizing the principle of maximum entropy to assign 
a Gaussian likelihood (eg. Sivia, 1996; Jaynes, 2003) by introducing a parameter σ 
reflecting the expected square-deviation between our predictions and the mean 

( ) ( ) )|()|()|(
2

12),(|,,),(, 2
22 IpIpIpQExpIttp

MRT

sCxταsC σ
σ

σπσ 



−∝

−

,  (6) 

where ( Ip | )σ  is the prior probability for σ.  Q represents the sum of the square of the 
residuals between the data and our model in (1), written   
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with M representing the number of detectors, R the number of experimental trials, and T 
the number of recorded time points per trial.  Some consider this a fancy way to state that 
the noise is Gaussian distributed.  However, as Jaynes demonstrates (2003), this is only a 
statement that the variance of the noise is equal to some value . Thus higher-order 
statistical structure in the noise is still acceptable and the noise does not have to be 
Gaussian distributed.   

2σ

The fact that we do not actually know the value of σ  is not a problem as we can 
obtain a conservative result by considering all possible noise levels by integrating the 
joint posterior over all possible values of σ .  Symmetry considerations require that we 
assign what is called a Jeffreys prior for σ, ( ) 1| −= σσ Ip  (Sivia, 1996).  Performing the 
integral of the joint posterior over all possible values of σ, we obtain a marginal posterior 
probability for our original set of model parameters 

( ) )|()|(),(|,),(, 2 IpIpQIttp
MRT

sCxταsC
−

∝ ,   (8) 

which is related to the Student t-distribution (Student, 1908). 
 If we were more knowledgeable, prior information regarding the source 
waveforms could be used to improve our inferences.  In addition, knowledge of the 
source-detector coupling, which is found by solving the electromagnetic forward 
problem, could be utilized to create an algorithm that simultaneously performs source 
separation and localization (Knuth, 1998; Knuth & Vaughan, 1998).  For simplicity, in 
this development we choose to assign uniform priors to  and , and absorb 
the terms into the implicit proportionality constant.  It is more convenient to work with 
the logarithm of the posterior probability (8), which can be compactly written as 

)|( Ip C )|( Ip s

constQMRTP +−= ln
2

ln  ,   (9) 

where P is the posterior probability ( )Ittp ),(|,),(, xταsC . 
An iterative algorithm to identify mcERPs, which we call differentially variable 

component analysis (dVCA), is implemented by solving (9) for the most probable set of 
model parameters.  Such a solution is called the Maximum A Posteriori (MAP) estimate.  
This most probable set of model parameters is represented as a peak in the space of 
posterior probabilities.  At this maximum, the partial derivative of the posterior 
probability with respect to any one of the model parameter values is zero.  For this 
reason, our first step in deriving an optimal estimate of the component waveshape by 
equating each of the partial derivatives of (9) with zero.  The partial derivative with 
respect to the jth component waveshape at time q gives 

)(2)(
ln 1

qs
QQMRT

qs
P

jj ∂
∂

−=
∂
∂ −     (10) 
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with 

( )[ ]∑∑
= =

−−=
∂
∂ M

m

R

r
jjrmjjrmj

j
qsCCW

qs
Q

1 1

2 )(2
)(

αα      (11) 

where 

∑
≠
=

+−−+=
N

jn
n

jrnrnnrmnjrmr qsCqxW
1

)()( ττατ .      (12) 

The term W is important as it deals with the data, which has been time-shifted according 
to the latency shift of the component being estimated, )( jrmr qx τ+ .  From this, one 
subtracts all other components after each has been appropriately scaled and time-shifted, 

)( jrnrnnrmn qsC ττα +− .  The derivative of the log probability is zero when the scaled, 
estimated waveshape equals W.  Thus one can obtain an expression for the optimal 
waveshape of the jth source at time q in terms of the other sources 

( )∑ ∑

∑ ∑

= =

= == M

m

R

r
jrmj

M

m

R

r
jrmj

j

C

CW
qs

1 1

2

1 1)(ˆ
α

α
.   (13) 

Similarly for the source amplitudes, one obtains an optimal estimate by 
considering the derivative of the log probability with respect to the amplitude of the jth 
source during the pth trial.  Setting this derivative equal to zero results in 

[ ]
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where 
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npnnpmnmp tsCtxU
1

)()( τα    (15) 

and 
)( jpjmj tsCV τ−= ,     (16) 

such that the solution is given by the projection of the detector-scaled component 
)( jpjmj tsC τ− onto the data after removing the other scaled, time-shifted components.  

This can be viewed in terms of a dot product, which is related to a matching filter 
solution. 

The optimal source-detector coupling coefficients are found similarly with 
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and 
)( jrjjr tsY τα −= .     (19) 

 Estimating the latency shift of the jth source during the pth trial using the approach 
taken for the other parameters leads to a complex solution as the latency appears 
implicitly as the argument of the waveshape function.  Instead we examine the necessary 
conditions for maximizing the quadratic form Q.  Expanding the square in (7), one can 
see that as the latency shift jpτ  is varied, only the cross-terms corresponding to the jth 
source change as long as the source waveshapes are zero outside of a closed time interval.  
The optimal estimate of the latency shift jpτ̂  can be found by maximizing the cross-
correlation between the estimated source and the data after the contributions from the 
other sources have been subtracted such that 

)(maxargˆ jpjp Z ττ =     (20) 
where 
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= =

≠
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1 1 1

)()()()( τατατ . (21)  

In practice, as a discrete model is being used for the component waveshapes s , we 
utilize a discrete set of latency shifts with resolution equal to the sampling rate. 

)(t

 Perhaps the greatest challenge is determining the number of sources warranted by 
the data.  In our investigations to date we have been focused on understanding the major 
sources responsible for the recorded data.  This typically entails first modeling a single 
component and examining the un-modeled residual signal in detail.  We then attempt to 
model the data with two components and so on to greater numbers of sources.  As we will 
demonstrate, the responses we are examining are sufficiently complex that this approach 
rapidly reveals previously unknown characteristics of the neurophysiology.  It is 
however, straightforward to apply more analytical methods of determining the 
appropriate numbers of sources.  One such method is the Akaike Information Criterion 
(AIC) (Akaike, 1974; Victor & Canel, 1992).  Increasing the complexity of the model by 
adding sources will always describe the data better and will increase the likelihood of the 
solution.  However, by adding sources we increase the model complexity as we now have 
more model parameters.  The idea is that a balancing point is reached when the increase 
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in likelihood is no longer worth the increase in model complexity.  This point represents 
the optimal number of sources.  For N sources in dVCA, the AIC is 

)2()log()(AIC 22 NNRNTcQMRTN +++= .   (22) 

The first term is minus one times the logarithm of the likelihood.  It is a data-dependent 
term, which decreases with an increasing number of sources due to the fact that more 
sources can better describe the data resulting in lower residual variance Q.  The second 
term is a model-dependent term, which is a constant times the number of parameters in 
the model.  This term increases with the number of sources.  The constant c  is the t-
statistic, with c  corresponding to a conservative 

2

42 = 95.0=p .  The solution for N 
sources is statistically significant ( 05.0≤p ) when )1(AIC)AIC( −< NN , which is 
equivalent to 

MRT
NRTQQ NN

)122(4)log()log( 1
−++

>−− .   (23) 

Note that Q  and  refer to the residuals of the model in (7) with N sources and 
 sources respectively.  While this is an attractive technique, we have found that the 

number of sources warranted by this criterion is far greater than those we have been able 
to fully understand by analyzing the data manually source by source. 

N 1−NQ
1−N

There are many ways that one can use the equations above to implement the 
dVCA algorithm.  A useful iterative method (Figure 1) begins by modeling a single 
neural source with the single-trial amplitudes set to unity and the latency shifts set to 
zero. 
1. Event-related potentials (ERPs) are computed for each detector by averaging the 

data over all trials.  The ERP for each detector is full-wave rectified, and its 
integral (area under the curve) is approximated.  The ERP having the largest area, 
or total signal content, is chosen as the initial approximation of the first 
component waveshape.   

2. The single-trial amplitude scales are all initialized to one and the single-trial 
latency shifts are initialized to zero.  This is consistent with the implicit 
assumptions of the ERP.   

3. The coupling matrix is estimated using (17).   
4. Single-trial latency shifts are estimated using (20).   
5. Single-trial amplitudes are estimated using (14).   
6. Equations (13), (17), (20), and (14) are then iterated until the average change in 

the waveshape from the previous iteration is less than 1% or until a maximum 
number of iterations has been performed.   

7. At this point the residual signal for each detector is computed by subtracting the 
model from the data, as in the argument of (7).  The residual signals are then 
averaged across trials to obtain a residual ERP for each channel.   

8. If 2≥N , the AIC criterion is applied.  If satisfied (or if 1=N ), another source is 
added and modeled. 
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9. The initial approximation of the next component waveshape is chosen to be the 
residual ERP of the detector having the largest total signal. 

10. The single-trial amplitudes and latency shifts of the new component are set to one 
and zero, respectively.   

11. Equations (13), (17), (20), and (14) are used to obtain the parameters 
accompanying the new component in addition to refining the estimate of the first 
component.  The set of equations is further iterated to refine the solutions until the 
average changes in each component waveshape is again less than 1% or until the 
maximum number of iterations has been reached.   

12. Additional components are added until the AIC criterion fails or the investigator 
chooses to stop. 

This implementation represents only one possible approach to utilizing these equations to 
obtain useful solutions. 
 
SIMULATIONS 
The dVCA algorithm was evaluated using synthetic data to demonstrate the utility of 
amplitude and latency variability in the identification of multiple evoked components and 
also to assess the robustness of the algorithm in the presence of noise.  We simulated 
electric field potentials recorded from a linear-array multielectrode with 15 channels 
spanning the cortical laminae in V1.  Specifically, we designed three synthetic ERP 
components (Figure 2A) sampled at 2 kHz to approximate the neural ensemble response 
to diffuse red-light stimulation in macaque V1 (Givre et al., 1995; Mehta et al., 2000).  
Figure 2B shows the field potentials derived from the noise-free synthetic data as the 
detectors in the multielectrode would record them.  Superimposing the field potentials 
from the three sources and approximating the second spatial derivative of this summed 
activity yields the current source density (CSD) profile shown in Figure 2C.  The value of 
the CSD technique is evident as it both localizes the neural activity at the current sources 
and sinks, and eliminates volume-conducted activity (i.e. see c3 below).   

The first component, c1, represents the initial biphasic activation in lamina 4, 
followed by the second component, c2, representing activation in the supragranular 
layers.  The third component, c3, represents a far-field source that volume conducts to the 
electrode channels and is observable in the field potential waveforms (Figure 2B), but it 
is absent from the CSD plot (Figure 2C) as the coupling between this component and the 
channels is nearly constant (linear with a small slope).  The spatial distribution of 
component amplitudes across the electrode array is defined by the coupling matrix, which 
was chosen to simulate the expected spatial distributions of the neural ensembles (current 
source-sink pairs) located in lamina 4, in the supragranular layers, and at a distant site.  
While this is a simplistic model, it captures features we expect to see in real recordings. 
 In the majority of simulations, uncorrelated Gaussian-distributed, additive noise 
was introduced, as in (1).  The signal-to-noise ratio (SNR) is different for each 
component from trial to trial because the three simulated components have different 
single-trial amplitudes.  For this reason, we specify the trial-average SNR for each 
component.  As the mean amplitude scale of the components is set to one, this is easily 
computed from the standard deviation of the component waveform divided by the 
standard deviation of the additive noise, 
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noise

component
component σ

σ
10log20SNR =     (24) 

where  =componentσ  0.357, 0.072, and 0.260 for c1, c2, and c3 respectively.  These σ 
values were calculated by taking the product of the standard deviation of the original 
component waveshapes and the absolute value of the maximum coupling coefficient for 
that source.  Thus the SNRs reported in this paper represent the maximal SNR for each 
particular component. 
 The performance of the dVCA algorithm was evaluated in several ways.  First, 
the ability of dVCA to separate the three mixed signals was measured using the Amari 
error (Amari et al., 1996), which derives from the fact that the estimated coupling matrix 

 can be determined to within a scaled permutation of the true coupling matrix Ĉ

ΠCC Σ=ˆ ,     (25) 

where  is a diagonal scaling matrix and  is a permutation matrix.  Here the quantities 
decorated with a carat denote estimated quantities and those without a carat denote the 
unknown true values.  Ideally, the source estimates are therefore related to the original 
sources by a simple matrix transformation 

Σ Π

sMs =ˆ ,      (26) 

where  is the N×T matrix of the original source waveshapes, s  is the N×T matrix of the 
estimated source waveshapes, and  is a transformation matrix found by 

s ˆ
M

11 −−= ΣΠM .     (27) 

The deviation of  from the ideal form suggested in (27) provides a measure of the 
quality of separation.  We estimate M  from (26) by 

M

1)()ˆ(ˆ −= TT ssssM     (28) 

and compute the Amari error by summing the rescaled cross-terms, which describes the 
degree of component mixing  
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Note that we have normalized the Amari error to have a maximum value of one rather 
than a number dependent on the number of sources. 

Second, the ability of dVCA to estimate each component waveshape was 
evaluated by calculating the fractional RMS error of the estimated waveshape as 
compared to the correct waveshape.  Note that before this comparison could be made the 
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estimated components s  needed to be rescaled and permuted because of the 
indeterminacy described by (25).  For the j
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Last, the accuracies of the amplitude and onset latency estimates for the jth 
component were evaluated by computing the deviation from the correct values for the 
entire set of single-trial estimates using 

jrjr
jr

ampE αα ˆ−=      (31) 
and 

jrjr
jr

latE ττ ˆ−= ,     (32) 

and then computing the range of values contained within both the 68th and 95th 
percentiles.  This not only provided a measure of accuracy, but also allowed us to 
compare the advantage of employing dVCA over the standard technique of averaging.  
This comparison is made by noting that with a trial-to-trial variability summarized by a 
standard deviation σ, the error one obtains by working with the average ERP is greater 
than or equal to the level of the variability σ.  Thus errors in the dVCA estimates below 
the standard deviations of the variability represent a significant improvement over the 
standard assumption that amplitudes and latencies do not vary. 
 
EFFECT OF AMPLITUDE VARIABILITY 
We first demonstrated that amplitude variability aids in the separation process.  Eleven 
experiments using synthetic data, each consisting of 50 simulated trials from the source 
component configuration described above, were performed where the degree of 
variability of the single-trial amplitudes was controlled.   To generate the synthetic data, 
50 single-trial amplitudes for each component were randomly sampled from a log-normal 
distribution with a sample mean 0.1=ampµ  and sample standard deviations of 

=ampσ {0, 0.0625, 0.125, 0.1875, 0.219, 0.25, 0.375, 0.5, 0.625, 0.75, 1.0} for each of 
the 11 sets of synthetic data.  As latency variability was not simulated in this set of 
experiments, the single-trial latency parameters were set to zero ( 0=jrτ ).  Given the 
component waveshapes, the coupling matrix, and the single-trial amplitudes and 
latencies, equation (1) was used to generate the synthetic data.  A standard deviation of 

217.0=noiseσ  was used for the noise resulting in SNRs of dB5.1,dB3.4 ,dB6.9−  (1.64, 
0.33, 1.18 in terms of standard deviation ratios) for c1, c2, and c3 respectively.  The 
dVCA algorithm was used to estimate the coupling matrix, component waveshapes, and 
single-trial amplitudes and latencies from the synthetic data.  As the true parameters were 
known, the performance of the algorithm was evaluated as previously described. 
 Without amplitude variability, dVCA was unable to separate the components as 
demonstrated by the high Amari error of 0.219 (see Figure 3A).  A small degree of 
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amplitude variability, 25.0=ampσ , renders the problem solvable as demonstrated in 
Figure 3A, where the Amari error drops below 0.05 corresponding to about a 10% 
fractional RMS waveshape error (about a 23 dB SNR) for three equal variance 
components, and remains relatively constant with increasing variability hovering about 
an average of 0.028.  Figure 3B shows the dramatic improvement in the waveshape 
estimation as quantified by the RMS errors, which rapidly drop to levels commensurate 
with the SNRs of the individual components.  The effect of amplitude variability on the 
single-trial amplitude estimates (not shown) remained relatively constant for 25.0≥ampσ  
with mean standard deviations of the errors in the single-trial amplitude estimates of 
0.014, 0.076 and 0.010 and for c1, c2, and c3 respectively.  This is well below the 
standard deviation of the amplitude variability.  Last, even though the true onset latencies 
were set to zero in these simulations, dVCA still estimates these quantities.  The errors of 
the onset latency estimates (not shown) also remained relatively constant with respective 
mean standard deviations of 0.417, 2.059, and 1.000 ms. 
 
EFFECT OF LATENCY VARIABILITY 
Next we demonstrated that latency variability also aids in the separation process.  Eight 
experiments using synthetic data, each consisting of 50 synthetic trials from the source 
component configuration described above, were performed where the variability of the 
single-trial latencies was controlled.  In these experiments there was no amplitude 
variability ( 1=jrα ).  To generate the simulated data, 50 single-trial latencies were 
randomly drawn from a Gaussian distribution with sample mean 0=latµ  and sample 
standard deviations of =latσ {0, 1.25, 2.5, 3.75, 5.0, 6.25, 7.5, 10.0} ms for each of the 
eight simulations.  The same noise variance was used as in the amplitude variability case. 
 Amari error was found to decrease with increasing latency variability, Figure 3C, 
dropping to below 0.05 with 5.7≥latσ ms.  Component waveshape estimation was also 
found to improve with increasing onset latency variability, but the effect is not nearly as 
dramatic as in the amplitude variability case.  Moreover, with the onset latency variability 
ranges considered, the accuracy of the algorithm’s estimates never attained the levels 
found with amplitude variability.  The most likely reason for this effect is that in terms of 
signal amplitude, amplitude variability is a first order effect whereas latency variability, 
when written as a Taylor expansion, is a second order effect dependent on the first 
derivative of the waveshape.  While the amplitudes were all set to one in the simulated 
data, dVCA still estimates these quantities. Again, these amplitude estimate errors were 
low for 5.7≥latσ ms with the mean standard deviation of the errors in the estimates 
equal to 0.017, 0.077, 0.011 for c1, c2, and c3 respectively, which is on the order of the 
errors seen in the amplitude variability trials.  Onset latency estimate errors also remained 
relatively constant with standard deviations of 0.250, 2.250, and 1.142 ms respectively. 
 
SENSITIVITY TO ADDITIVE WHITE GAUSSIAN NOISE 
In this first noise study we examined the robustness of dVCA in the face of additive 
white Gaussian noise by simulating twelve different noise levels.  Each simulation relied 
on 50 trials of synthetic data where variability in both the amplitudes and latencies of the 
components was modeled.  Variability ranges were in accordance with those observed in 
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our previous investigations (Truccolo et al. 2001).  Single-trial amplitudes were drawn 
from a log-normal distribution with sample mean 0.1=ampµ  and sample standard 
deviation 0.1=ampσ .  Single-trial latencies were drawn from a normal distribution with 
sample mean 0=latµ  and sample standard deviation 0.10=latσ ms.  The synthetic signal 
from each electrode (detector) was contaminated with a unique white Gaussian noise 
waveform as specified in (1).   

The component specific SNRs and resulting Amari errors, listed in Table 1 and 
shown in Figure 4A, indicate a relatively smooth increase in Amari error with decrease in 
c1 SNR.  However a significant jump in error occurs as the SNR of c2 passes below –25 
dB (c1 SNR = –11 dB) suggesting that an SNR level of about –25 dB may denote a 
transition from a useful data set to a prohibitively noisy one.  These results can be 
compared with the waveshape fractional RMS errors, which grow exponentially with 
decreasing SNR (Figure 4B).  The errors reach 1.0, signifying that the deviations in the 
estimates are on the scale of the waveshape itself, at about –23 dB to –25 dB for the 
localized components and about –31 dB for the far-field component (c1 SNR = –28 dB).  
Figure 4E shows waveshape results for four different noise levels providing a better idea 
of the quality of the separation under these conditions.  Most noteworthy is the fact that 
the majority of the waveshape error is due to the high-frequency contamination of the 
Gaussian noise rather than mixing of the components.  Much of this could easily be 
improved by incorporating a prior probability describing the expectation that components 
should be slowly varying with respect to typical sampling rates, which would effectively 
filter the results. As we will demonstrate, explicitly filtering a real data set can remove 
important signals, and alter others (Mocks et al., 1986; Bogacz et al., 2002). Regardless, 
some distortion in the positive phase of c1 can be seen at a SNR dB8.101 −= , which is 
much more easily noticeable at SNR dB8.221 −=  where only c1 and c3 remain 
detectable.  The improved accuracy in the estimation of the far-field component c3 
(illustrated in Fig. 4B) is most likely due to the fact that each electrode in the array 
provides information about the far-field source, whereas for local sources there are 
detectors with small signals. 

Next we examine the quality of the single-trial amplitude estimates.  Figure 4C 
shows the relationship between the errors of the estimates and the range of variability of 
the amplitudes.  The performance of dVCA exceeds that of signal averaging when the 
estimation errors are less than the degree of variability in the original single-trial 
amplitudes.  This is because by simply averaging the responses, one implicitly assumes 
that the single-trial amplitude is consistently equal to the mean resulting in errors equal to 
the degree of variability.  The horizontal black lines in Figure 4C represent the degree of 
variability of the component amplitude as one standard deviation of the single-trial 
amplitudes about their mean.  The solid blue and dashed red curves represent one and two 
standard deviations, respectively, of the single-trial amplitude estimate errors.  Again, the 
far-field estimates (c3) were more accurate than those of the local sources (c1 and c2).  
Ninety-five percent of the amplitude estimates were within the degree of variability down 
to SNRs between –18 to –23 dB with 68% of the estimates within the range well down to 
–23 to –25 dB, which is consistent with the performance indicated by both the Amari 
error and the waveshape RMS error.  To demonstrate the quality of the amplitude 
estimates, Figure 4F shows scatter plots of the true amplitude scales versus the estimates 
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for c1 at the same four SNR levels as in Figure 4E.  Note that different values for the 
single-trial amplitudes were used in each simulation.  Correct estimates will lie on the 
diagonal, whereas incorrect estimates are off diagonal.  While the errors in the values of 
the amplitude estimates become unacceptable around –22.8 dB the pattern still exhibits a 
strong correlation ( ). 948.0=r

Figure 4D shows the behavior of the onset latency estimates, which are less well 
estimated than the amplitudes.  In addition, the degradation of the quality of the far-field 
estimates was not noticeably different than those of the local sources with 95% of the 
estimates being within the range of variability down to an SNR of –8 to –12 dB, and 68% 
of the estimates within the range of variability down to –20 to –25 dB.  Figure 4G shows 
scatter plots of the true onset latencies versus the estimates for c1.  The diagonal pattern, 
which indicates a high level of predictability, is almost lost by –22.8 dB ( ).  
Note that due to the difference in variability levels of the amplitudes and onset latencies, 
the distribution of points in Figure 4F should not be directly compared to those in Figure 
4G as they are effectively at different magnifications. 

392.0=r

 
SENSITIVITY TO CORRELATED FAR-FIELD NOISE 
In an effort to more accurately simulate the conditions that may be experienced during a 
real experiment, we designed a second noise study to determine the effect of ongoing 
correlated far-field activity on dVCA performance.  The ongoing far-field activity was 
modeled as a time-series with a 1/f spectrum so that correlations would exist at all time 
scales.  To simulate its far-field nature the ongoing activity was coupled identically to 
each detector. 

Again twelve levels of the ongoing noise amplitude were tested; however, in this 
study Gaussian noise was not added to the individual electrodes.  The specific noise 
levels, SNRs of the three components and resulting Amari errors are listed in Table 2.  
Figure 5A shows the Amari error smoothly increasing with decreasing SNR.  The Amari 
error reaches the same level of error as in the Gaussian noise case with 20 dB less noise 
amounting to large errors around a c1 SNR of 0 to –5 dB.  It is apparent that this type of 
noise more severely limits the ability of dVCA to separate signals.  Figure 5B shows the 
component waveshape errors blowing up around –10 dB, with the effect on the far-field 
component c3 (red) being understandably catastrophic as both c3 and the noise are 
correlated across detectors.  The amplitude errors reach unacceptable levels around –5 to 
–8 dB (Figure 5C).  However, most interesting are errors of the onset latencies (Figure 
5D).  The errors for the local sources reach high levels (68% of estimates being within 
the range of variability) between –7 and –8 dB, whereas the errors for the far-field 
component c3 are large across the entire SNR range considered with 95% of the estimates 
never being within the range of variability.  This is because the far-field noise is severely 
interfering with the ability to identify the far-field component in any given trial. 
 
APPLICATION TO REAL DATA 
To further demonstrate the utility of dVCA, we applied the algorithm to signals recorded 
from primary visual cortex of a male macaque monkey during the cuing period of an 
earlier attentional study (Mehta et al., 2000).  During data collection, the subject was 
required to make a discrimination between standard and target visual stimuli for a juice 
reward.  The standard visual stimulus was a 10-µs red-light flash presented through a 
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diffusing plate subtending a 20º visual angle, centered on the point of visual fixation, 
while the target was presented similarly but slightly differed in intensity.  Stimuli were 
presented at irregular interstimulus (ISI) intervals (minimum of 350 ms, average of 2 
stimuli per second).  Intracortical field potentials were recorded using a linear-array 
multielectrode with 14 contacts, equally spaced at 150 µm, inserted into V1 and 
positioned so that the channels spanned all six laminae (see Figure 2A, middle).  The 
continuous field potential record from all channels, incorporating the stimulus tags, was 
sampled at 2 kHz and recorded on a PC-based data acquisition system (Neuroscan, El 
Paso, Texas). 

The signals examined with dVCA were recorded during 171 trial presentations of 
the standard visual stimulus and were epoched from 0 to 300 ms (0 ms indicates stimulus 
presentation).  No other pre-processing of the data was performed.  The average field 
potential signals in each electrode contact were calculated and utilized to determine the 
current source density (CSD) profile of these data (Figure 6A).  The CSD profile was    
approximated using a 3-point, second-order difference of the field potentials (Nicholson 
& Freeman, 1975; Schroeder et al., 1995).  This profile is a useful tool because it indexes 
the local regions of transmembrane current flow and eliminates volume-conducted 
activity generated at a distant site, which often contaminates local field potential 
recordings.  Consistent with earlier studies reviewed by Schroeder et al. (1995; 2001), the 
visually-evoked CSD profile sampled from V1 during this experimental session shows 
that the earliest activation occurs in the granular subdivisions of Layer 4, which are the 
major target of thalamic afferents.  A second focus of activity localizes to the 
supragranular (laminae 2 and 3) layers and is thought to index a feedforward activation of 
pyramidal cells by interneurons in the granular layer (Schroeder et al. 1990; 1991).  Note 
that as we are using a 3-point, second-order difference to approximate the CSD, the top 
waveform in Figure 6A is associated with electrode channel 2 rather than channel 1. 

Although it is an attractive idea to apply dVCA as an automated computer 
program that analyzes the data and produces an answer (as we did with simulated data), 
we demonstrate that it must be used manually as a tool to understand the data being 
analyzed.  To stress the importance of this, instead of following the flow chart exactly as 
in Figure 1, we first applied dVCA to the single-trial local field potential signals to 
extract a single component.  As shown in Figure 6B, the CSD profile of this component 
illustrates a biphasic response localized in the granular layer suggesting that it represents 
the initial response to the thalamic inputs.  Not surprisingly, this waveshape and its 
distribution are very similar to the CSD profile of the ensemble averaged ERP of Figure 
6A, as the initial approximation to the first component derives from the ensemble 
average.  However, note that it excludes much of the minor variations not associated with 
this main activation pattern.  In addition to providing information about the component 
waveshape and its spatial distribution, dVCA provides information about the amplitude 
and latency shift of the component in each trial.  Figure 6C shows the distribution of 
single-trial amplitude scales for this component.  In accordance with the dVCA 
normalization condition, the mean of the sample equals one ( 11 =µ ).  More importantly, 
the distribution illustrates that there is very little single-trial amplitude variability 
( 1044.01 =σ ), which is on the order of 10% variation.  In contrast, the distribution of 
single-trial latency shifts (Figure 6D) shows something quite unexpected – it is bimodal 
with an early latency peak at  and a late latency peak at  with a ms625.4− ms125.2
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difference of 6 .  Moreover, the ratio of late to early responses is 2.29:1 (119:52), 
as defined by a  cutoff between the two modes.  

ms75.
25.1− ms

We performed several different analyses to confirm the existence of the bimodal 
latency distribution displayed in Figure 6D.  First, Figure 6E displays a colorized plot of 
the actual, single-trial field potentials (FPs) recorded from electrode channel 10, which is 
located in the granular layer.  Time runs along the horizontal axis, chronological trial 
number runs along the vertical axis, and color indicates the amplitude of the FP.  The red 
dashes on the left side of the plot indicate trials for which dVCA determined the latency 
to be early.  It is easily seen that these highlighted trials have a response onset before the 
late trials, and it confirms that the bimodal latency distribution of the dVCA estimation 
concurs with observations from the actual data.  Second, we performed a cross-
correlation analysis between each single-trial waveshape and the trial-averaged, FP 
waveform between 25 and 95 milliseconds (this time period captures the initial negative 
deflection of the averaged FP waveform).  This analysis also yielded a bimodal 
distribution (not shown).  Finally, we selectively averaged the early and late FP 
recordings in channel 10 and showed them to be significantly different in both latency 
and waveshape (Figure 6F).  The trial-averaged FP waveshape (black) lies in-between the 
early (red) and late (blue) waveshapes.  As expected, the minimum of the early averaged 
responses occurs before the minimum of the late averaged responses (5.5 ms difference).  
While this time difference reflects the fact that these early responses precede the late 
responses, it is however not as accurate as the dVCA estimate as it is derived from a 
single-time point rather than from the entire waveshape.  It is also not surprising that the 
late responses more closely resemble the ensemble averaged FP as they outnumber the 
early responses by more than 2 to 1. 

Figure 6E illustrates one more interesting phenomenon: the early and late 
responses tend to be grouped in chronologically in time, indicating that the effect is not 
random.  This suggests that the two response modes may be related to the attentional or 
arousal state of the subject. 

As these two types of granular responses suggest different physiological 
mechanisms, we split the data set into two subsets: an early subset and a late subset.  We 
then used dVCA to re-estimate the first component in each subset.  Figures 7A and B 
show the CSD of the first component from the early and late subsets, respectively.  The 
onset latency of the prominent granular sink over source configuration was determined by 
descending down the left side of the peak and identifying the point in time where five 
consecutive previous data points were monotonically increasing.  With this measure the 
response onset latency of the early subset (Figure 7A) was 28 ms, which is clearly earlier 
than its counterpart in the late subset (Figure 7B), which was 42.5 ms, as indicated by the 
drop lines.  The waveshapes of the two types of Layer 4 responses differ significantly 
indicating a difference in activation patterns between subsets.  This is also confirmed by 
the different degrees to which this activation appears in the supragranular layers, as the 
later responses seem to be more strongly coupled to the supragranular activation than the 
early responses. 

After any analysis the residual signals must be examined since they represent 
activity that was not modeled by the algorithm.  In Figure 7C we show the trial-averaged 
FP residuals for the early (red) and late (blue) subsets for odd-numbered electrode 
channels.  First, the black arrows indicate activation that is almost identical in both 

 18



subsets (mean peak time at 37.75 ms for the early subset and 37.68 ms for the late 
subset).  Due to the timing and the laminar distribution of this field potential, we believe 
that this negativity reflects the initial signal from the thalamocortical afferents.  The early 
responses onset just after onset of this thalamic signal, which occurs at about 25 ms, 
whereas the late responses are delayed.  After 50 ms the residual signals from the two 
subsets diverge significantly.  This difference is striking in channel 1 where the 
oscillations are 180 degrees out of phase.  Of significant interest are the ultra-high 
frequency (160-220 Hz) oscillations (UHF) in the granular and the supragranular layers 
of the early subset (red arrow in channel 11).  These UHF oscillations, which onset with 
the initial granular response, are absent in the averaged residuals of late responses.   

To verify that these UHF oscillations were not present in the late responses, we 
applied a Morlet-based wavelet transformation to the two residual subsets of channel 11.  
To preserve information about time-frequency behavior of oscillations not precisely time-
locked to the stimulus, we applied the wavelet transform to each single-trial separately 
and the wavelet results were then averaged.  These results show that there is a burst of 
UHF activity ranging from about 160-220 Hz and occurring between 42-57 ms in the 
early subset, which is represented as an “island of activity” in the time-frequency plot 
(Figure 7D).  Such an island of activity is completely absent in the late subset (Figure 
7E).  This finding demonstrates the ability of dVCA to identify distinct physiological 
modes of activation using the single-trial characteristics of the responses, even in 
situations where the data are unfiltered. 

To demonstrate how dVCA can be used to extract multiple components, we will 
now focus on the late subset.  A complete analysis of the entire data set will be published 
elsewhere.  In this example we model three components (Figures 8A, B, C).  Components 
2 and 3, (c2 and c3) have been magnified by a factor of 2 to make them easily visible, 
and are thus not on the same scale as component 1 (c1), which is the largest response.  To 
assure that the SNR is within the acceptable range for dVCA, we used equation (24) to 
compute the SNR for each component in each channel.  For a given component this is 
accomplished by estimating the standard deviation of the component in that channel and 
the standard deviation of the residual signal in that channel.  The average SNR for each 
component was then computed by averaging its SNRs across channels.  We found that all 
three components are well within the range of acceptable performance with average 
SNRs of 1.59 dB, 1.68 dB, 0.98 dB for c1, c2, and c3 respectively. 

First, c1 is in all practical respects identical to the single component we 
previously estimated from the late subset.  The prominent granular sink over source 
configuration is activated at about 35.5 ms in this more detailed model.  While the onset 
time is easy to quantify in the large biphasic response, the more complex oscillatory 
components required a more sophisticated onset measure.  By fitting the pre-response 
interval with a line, we computed the standard deviation of the pre-response signal 
deviations from that line.  Component onset was then defined as the first of 5 consecutive 
time points where the component amplitude was greater than two standard deviations.  
This was useful as we did not filter the data and low-frequency oscillations could produce 
confounding baseline deviations.  With this measure, we found small, but significant, 
activations in c1 as early as 26 ms (see drop line in Fig 8A) occurring after the thalamic 
signal at 25 ms and before the massive biphasic response at 35.5 ms. 
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A low frequency biphasic response is described by c2 (Fig 8B).  Significant onset 
of this component occurs at 37 ms (see drop line), which is after c1 begins the biphasic 
activation in the granular layers.  Note that the source and sink distribution of c2 is in 
superficial layers as compared to the small supragranular response of c1.  At first glance 
it appears that the spatial distribution of c3 is the same as that of c2.  However, while 
these components may involve the same populations of cells, c3 also involves cells in the 
granular layers.  The initial activation of c3 is at 30 ms, but it is not until 45 ms when the 
component begins to display a biphasic activation followed later by a slow wave. 

Figure 8D shows the single-trial amplitude histograms along the diagonal, along 
with scatter plots showing the relationships between the single-trial amplitudes of the 
three components.  The initial granular response, c1, has the lowest amplitude variability 
( 102.01 =ampσ ), whereas the later supragranular responses display greater variability 
( 248.02 =ampσ , 362.03 =ampσ ).  Figure 8E shows the single-trial latency results along 
with scatter plots depicting the trial-by-trial relationships between component latencies. 
Component c1 again displays the least variability ( 08.11 =latσ ms), but in this case, c2 
displays greater variability than c3 ( 85.92 =latσ ms, 58.13 =latσ ms). 

Correlations in the scatter plots between component parameters indicate dynamic 
interactions among these components.  Of the amplitude-amplitude interactions (Figure 
8D), we see that the amplitudes of c2 are correlated with c3 ( 495.0=r

171.0

, ), so that 
when c2 is larger than average, c3 is also larger than average.  Such correlation might 
suggest that these components have not been separated.  However, note that the latency 
variability of each component is very different (Figure 8E), and that there is little 
correlation between the latency of c2 and the latency of c3 (

710−<p

=r , ). 075.0=p
Of the latency-latency interactions, the largest correlation is between the c1 and 

c2 latencies ( r , ), so that when c1 is earlier than average, c2 is also 
earlier than average.  More interesting are the amplitude-latency interactions.  Figure 8F 
shows the two most probable relationships.  First the amplitude and latency of c1 are 
correlated ( , ), so that when c1 is early its response is smaller, and 
when it is late its response is larger.  Such a self-interaction contains much information 
about the underlying dynamics of the neural response represented by c1.  More apparent 
is the relationship between the amplitude of c1 and the latency of c2 
( , ).  In this case, when the c1 granular response is larger than average, 
c2 onsets later than average.  This result is somewhat counterintuitive, as generally we 
expect that if the c1 is driving the c2, a larger c1 might produce an earlier onset c2.  The 
difference between c1 and c2 is further highlighted by noting that the amplitude of c1 is 
anti-correlated to the latency of c3 (

327.0=

297.0= p

710−<

001.0<p

002.0<r

p483.0=r

190.0−=r , 048.0=p ) (not shown). 
 
 
DISCUSSION 
In this paper, our goal was not to understand the details of these responses in visual 
cortex and their dynamic interactions, but merely to describe how techniques like dVCA 
now enable neuroscientists to tease apart and study these dynamic interactions among 
neural ensembles during cognitive or sensorimotor processing.  Detailed studies of the 
single-trial interactions among neural components in a variety of experimental situations 
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will provide much insight into the information processing strategies employed by the 
various cortical areas and by the brain as a whole.  

Maximum likelihood techniques have been used previously to approach the 
problem of trial-to-trial variability of evoked responses.  These past works have relied on 
single-component signal models that incorporate latency variability (Woody, 1967; Pham 
et al., 1987), and more recently both amplitude and latency variability (Jaskowski & 
Verleger, 1999) to characterize evoked responses.  Multiple-component models were 
introduced by Lange et al. (1997) by adopting a template model of the ERP waveshapes, 
and were used to characterize both the amplitude and latency of multiple components in 
single-channel EEG recordings.  Early versions of the dVCA algorithm also dealt with 
multiple-component, single-channel estimation (Knuth et al., 2001; Truccolo et al., 2001; 
2002; 2003), but instead employed a completely general waveshape model that did not 
rely on a given functional form.  The dVCA algorithm presented here allows one to use 
multiple channel recordings to identify and characterize multiple ERP components in the 
single trial by taking advantage of the trial-to-trial variability. 
 The dVCA algorithm was derived by approaching the problem as an exercise in 
Bayesian parameter estimation.  There are several advantages to a Bayesian approach.  
First, the strategy is model-based in the sense that given a quantitative model of the 
phenomena of interest, probability theory can be used to estimate the values of the model 
parameters from the data.  Any failure in the algorithm can be traced back to either 
inadequacies of the model to represent the physical situation, assumptions or 
approximations made in its implementation, or a situation produced by an insufficiently 
informative data set.  Second, any inadequacies in the model, once identified, are readily 
remedied leading to improvements in the algorithm.  This is the crux of the scientific 
method.  Third, once the model component set has been adequately modeled, the residual 
data can be examined to identify previously hidden phenomena.  For example, in this 
paper we have discovered UHF oscillations associated with early initial granular layer 
responses and absent in the more frequent late responses.  By accurately identifying the 
evoked components in the single-trial epochs, one can more accurately study the ongoing 
activity, which has been purported to contain signals important for communication 
among brain regions (Bressler et al., 1993; Singer, 1993; Truccolo et al., 2003), 
perception, working memory, and sensorimotor integration (Engel et al., 2001; Lee et al., 
2003). Fourth, the Bayesian methodology allows one to incorporate additional prior 
information into the problem to improve one’s inferences, which is a major advantage 
that we plan to capitalize on in future work. 

The dVCA algorithm itself has a number of technical strengths.  The first is that 
neither the components, nor their underlying neural sources are assumed to be 
independent of one another.  This avoids the adoption of physiologically implausible 
assumptions and enables one to study the dynamical interactions among neural sources.  
The second strength is that by taking into account the trial-to-trial variability in amplitude 
and latency, one is able to quantify the interactions among sources as well as study their 
time-dependent properties over the duration of the entire experiment.  Single-trial 
analysis also makes it possible for dVCA to detect components, which are not present in 
every experimental trial thus allowing an experimenter to study cognitive or sensorimotor 
processes, which may employ different processing strategies at different times.  
Additionally, one can use dVCA to study how attention, arousal, and varying disease 
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states may modify neural responses on a single-trial basis.  Finally, while no explicit prior 
information about the values of the model parameters was included in the development of 
the algorithm, much prior information went into the choice of the model.  This is in 
contrast to other approaches such as ICA and other general BSS techniques, which strive 
to make very general assumptions about the model and the distributions of the parameter 
values (Knuth, 1997; 1999). 

We have found that dVCA is robust in the presence of noise allowing accurate 
estimates of all parameters down to SNRs on the order of –20 dB for white Gaussian 
noise and –7 dB for correlated far-field noise.  The estimation of the far-field signals in 
the presence of correlated far-field noise was difficult.  This is undoubtedly due to the 
fact that the noise in this case possesses the same spatial distribution as the source 
making the two difficult to distinguish.  In reality however, the behavior of the 
background noise will fall somewhere between these two extremes.  When using dVCA, 
we recommend that one calculate the SNR of the estimated components to assure that the 
algorithm is operating in a regime where the quality of the parameter estimates is assured.  
In addition, the spatial distribution of the sources across the array should be examined to 
assure that they are physiologically reasonable.  We have been able to construct cases, 
which remain inseparable by the algorithm.  This can typically be detected by examining 
the CSD map of the estimated components across the array.  In cases where two sources 
remain mixed, each are characterized by multiple sets of neural sources in identical 
locations.  However, we have found this to be more difficult to deal with in intracortical 
laminar recordings as the cortical architecture only allows for a small number of current 
sources and sinks, and tight couplings between sources is extremely likely (Shah et al, 
2002).  One possible solution to this problem is to restart the algorithm using starting 
conditions consistent with the source locations indicated by the CSD.  The value of the 
posterior probability of these solutions obtained from different starting points can also be 
computed and compared (when using the same model order) to assure that one has the 
most probable solution and is not merely stuck at a local maximum.  Searching such 
enormous solution spaces is a difficult problem faced by all source separation algorithms. 
 We are currently working to improve the dVCA algorithm along several lines.  
First, there are often situations where the experimenter has knowledge about the forward 
problem, which describes the propagation of the signals to the detectors.  Such 
knowledge can be incorporated by adopting a more specific source model (eg. current 
dipole model) and expressing the coupling coefficients in terms of the new ERP source 
parameters, the detector coordinates, and head geometry (Knuth & Vaughan, 1998), or by 
using information about the propagation law to derive appropriate prior probabilities for 
the coupling matrix elements (Knuth, 1998; 1999).  Similarly, more detailed information 
about the correlation structure of the background noise can be used to derive more 
accurate likelihood functions (Sivia, 2003).  Second, by employing a discrete model of 
the component waveshapes, we are restricted to estimating only discrete values of onset 
latency shift.  By adopting a waveshape model that relies on a set of continuous basis 
functions, continuous values of latency shift could be investigated.  An example of a 
continuous time model is the frequency domain model of the ERP employed by Pham et 
al. (1987) and Jaskowski & Verleger (1999).  In that model the waveshape is described as 
a sum of a discrete set of sinusoids, which is continuous in the time domain, but discrete 
in the frequency domain.  In principle, such a model allows one to describe latency shifts 
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with arbitrary precision.  Third, this algorithm represents a MAP estimate based on an 
iterative, or fixed-point solution.  While each step in this algorithm has intuitive appeal, it 
is perhaps not the most effective means to obtaining a solution.  Markov chain Monte 
Carlo with simulated annealing is well suited to performing simultaneous model selection 
calculations and parameter estimations.  We have briefly investigated such an approach 
only to find it to be extremely time consuming given the large number of parameters in 
the model.  It is expected that a clever implementation based on the mcERP model and 
posterior probability derived in this paper would outperform the algorithm presented here 
by automatically identifying the number of components warranted by the data, avoiding 
local optimal solutions, and readily providing error bars for the results.  Last, in principle 
this algorithm is equally applicable to human scalp EEG and MEG data.  In practice, 
there are several challenges.  The number of detectors utilized in these paradigms is 
typically an order of magnitude greater than those we have demonstrated here.  It is 
certain that the algorithm in its present implementation will run more slowly.  Also, 
whole-head studies expose the experimenter to an order of magnitude more sources than 
we work with in our intracortical recordings.  This increases the possibility that the 
dVCA algorithm can become trapped in non-optimal local solutions.  This of course is a 
potential problem for all source separation and localization techniques, and dVCA is no 
exception.  We are beginning to examine the application of dVCA in human scalp 
studies, and expect that if such pathological solutions are encountered, they can be 
avoided by utilizing more sophisticated search algorithms.  
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Additive White Gaussian Noise 
Component  
SNR (dB) Case Noise 

Std Dev 
1 2 3 

Amari 
Error 

1 0.155 7.2 -6.7 4.5 0.004 
2 0.310 1.2 -12.7 -1.5 0.005 
3 0.437 -1.8 -15.7 -4.5 0.013 
4 0.618 -4.8 -18.7 -7.5 0.011 
5 0.734 -6.3 -20.2 -9.0 0.014 
6 0.873 -7.8 -21.7 -10.5 0.026 
7 1.037 -9.3 -23.2 -12.0 0.017 
8 1.233 -10.8 -24.7 -13.5 0.050 
9 1.742 -13.8 -27.7 -16.5 0.108 
10 2.460 -16.8 -30.7 -19.5 0.100 
11 4.909 -22.8 -36.7 -25.5 0.198 
12 9.794 -28.8 -42.7 -31.5 0.421 

 
Table 1. This table shows the effect of additive white Gaussian noise on the separability 
of the three components.  The component SNRs are calculated using the component 
standard deviations of 0.357, 0.072, 0.260 for components c1, c2, and c3 respectively. 
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Additive 1/f Far-Field Noise 
Component  
SNR (dB) Case Noise 

Std Dev 
1 2 3 

Amari 
Error 

1 0.036 20 6.1 17.2 0.015 
2 0.048 17.5 3.6 14.7 0.013 
3 0.063 15 1.1 12.2 0.017 
4 0.113 10 -3.9 7.2 0.008 
5 0.150 7.5 -6.4 4.7 0.035 
6 0.201 5 -8.9 2.2 0.068 
7 0.268 2.5 -11.4 -0.3 0.113 
8 0.357 0 -13.9 -2.8 0.143 
9 0.476 -2.5 -16.4 -5.3 0.159 
10 0.634 -5 -18.9 -7.8 0.191 
11 0.846 -7.5 -21.4 -10.3 0.359 
12 1.128 -10 -23.9 -12.8 0.365 

 
Table 2. This table shows the effect of additive 1/f correlated far-field background signal 
on the separability of the three components.  The component SNRs are calculated using 
the component standard deviations of 0.357, 0.072, 0.260 for components c1, c2, and c3 
respectively. 
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Figure 1  Flow chart describing the dVCA algorithm. 
This flow chart describes the implementation of the dVCA algorithm, which relies on 
equations (13), (17), (20), and (14) in the text.  It is based on a hierarchical model, which 
begins with a single component model and adds components until AIC is no longer 
satisfied. 
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Figure 2  Synthetic data used in the simulations. 
The synthetic data utilized in this paper are derived from a model of expected responses 
in macaque V1 when stimulated by a red-light flash.  (A) These data represent electric 
field potentials recorded from a 15 channel linear-array multielectrode spanning the 
cortical laminae in V1.  The thalamic input activates the spiny stellate cells in layer IV, 
generating a biphasic field potential (component 1).  The feedforward connections from 
the stellate cells activate the pyramidal cells in the supragranular layers (component 2).  
Component 3 models a signal generated by a far-field source which volume conducts to 
the multielectrode array.  (B) The noise-free synthetic field potentials generated by these 
three components are recorded differently by each electrode in the multielectrode array.  
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Notice that the polarity and amplitude of the recordings depends on the physical positions 
of the current sources and sinks in the cortical laminae (see C).  (C) The current source 
density (CSD) of the summed field potentials in B is computed using an approximation of 
their second spatial derivative.  The CSD focuses the activity at the location of the current 
sinks (negative) and sources (positive) relative to the detector positions.  This technique 
clarifies the laminae in which the field potentials are generated.  Notice that far-field 
sources do not appear in the CSD. 
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Figure 3  Amplitude and latency variability aids component identification.  
(A) The Amari error, which measures the degree of signal separation, decreases with 
increasing amplitude variability with 25.0≥ampσ  being sufficient for signal separation.  
(B) The waveshape RMS errors also indicate the importance of amplitude variability.  (C) 
Amari error decreases with increasing latency variability, with ms5.7≥latσ being 
necessary to achieve effective separation.  (D) Increasing latency variability also 
improves the estimate of the component waveshapes, but not as dramatically as 
amplitude variability. 
 
 
 
 

 33



 
Figure 4  The dVCA algorithm is robust to noise.   
(A) The Amari error increases with decreasing SNR (see text).  (B) The quality of the 
waveshape estimates degrades with decreasing SNR.  Note that the graph is drawn with 
respect to c1 SNR.  The waveshape RMS error reach 1.0, signifying that the deviations in 
the estimates are on the order of the waveshape itself, at about dB23−  to  for 
the localized components and about 

dB25−
dB28−  for the far-field component.  (C) The single-

trial amplitude estimates are also robustly recovered.  The horizontal black lines denote 
the level of variability in the single-trial quantities.  The blue solid and red dashed curves 
indicate one and two standard deviations, respectively, of the single-trial amplitude 
estimate errors.  When the blue curves are within the black lines, dVCA is performing 
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better than the standard practice of averaging (see text).  High quality estimates are 
achieved down to dB18−  to , and adequate estimates down to .  (D)  
Single-trial latency estimates are less well estimated than amplitudes.  High-quality 
estimates are possible down to to 

dB23−

dB8−

dB25−

dB12− , and adequate estimates down to about 
.  (E) These plots demonstrate the quality of the waveshape estimates for four 

SNR levels.  At a c1 SNR of , the smallest component, c2, was unable to be 
extracted from the data.  (F)  Scatter plots of the true c1 single-trial amplitudes versus the 
estimated c1 single-trial amplitudes demonstrate the quality of amplitude estimates, and 
show that useful information can be obtained down to an SNR of 

dB20−
dB5.22−

dB5.22− .  (G)  Scatter 
plots of the true c1 single-trial latencies versus the estimated c1 single-trial latencies 
demonstrate that latencies can be estimated down to SNR levels below − , but 
become inaccurate by . 

dB8.10
dB5.22−
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Figure 5  The dVCA algorithm is also robust to correlated far-field noise, although to a 
lesser degree than independent Gaussian noise.   
(A) The Amari error increases with decreasing SNR and reaches the same level of error 
as in the Gaussian case with 20 dB less noise.  (B) The component waveshapes blow up 
around , with the far-field component, c3, being more dramatically affected.  (C) 
The amplitude errors reach unacceptable levels around 

dB10−
dB5−  to .  (D) The 

latency estimates become unacceptable between –7 and –8 dB for the local sources, 
whereas the far-field component is even poorly estimated at levels above  

dB8−

dB5 .
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Figure 6  Single component analysis of V1 responses. 
(A) CSD of the trial-average ERP shows granular and supragranular activation in 
macaque V1 in response to a red light flash (number of trials = 171).  (B) Estimating a 
single component with dVCA results in a waveshape with a CSD profile that captures the 
most prominent responses in the data.  (C) A histogram of the single-trial amplitudes of 
this component shows that the amplitude rarely varies more than ≤ 20%.  (D) The 
histogram of the single-trial latencies reveals that there are two response modes: an early 
response that happens 1/3 of the trials and a late response that happens about 2/3 of the 
trials.  The peak latency difference between these two modes of activation is 6.75 ms.  
(E) To verify the existence of these two activation modes, this figure shows all 176 trials 
of the field potential recorded in channel 10. Each trial is represented as a horizontal line 
with its time-varying color representing the time-varying amplitude of the field potential.  
Trials designated as belonging to the “early” subset are indicated by the red dashes on the 
left side of the plot.  Note that the “early” trials are characterized by a negative (yellow) 
field potential onset occurring before the onset seen in the “late” trials. (F) Further 
verification of this finding is provided by comparing the average FP recorded in channel 
10 with the average obtained from the “early” subset and the average obtained from the 
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“late” subset.  While both the early and late responses show initial activation occurring at 
the same time, the early response’s activation continues to grow, while the late response’s 
activation decreases before growing again.  The difference in latency between the minima 
of the two sub-averages is 5.5 ms. 
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Figure 7  Examination of the early and late responses. 
The dataset has been split into two subsets: the early subset and the late subset, and a 
single component has been re-estimated for each subset.  (A) The CSD profile of the 
early component with a drop line showing onset of the major response at 28 ms. (B) The 
CSD profile of the late component.  The drop line shows its major response onset at 42.5 
ms. The waveshapes of the two responses are noticeably different, as are their laminar 
profiles.  (C) The average residual field potentials, computed by subtracting the single-
trial model from the single-trial data and averaging over all trials, further demonstrates 
the differences between these two modes of activation (early-red, late-blue). Only the odd 
channels are shown.  These residuals represent other responses not modeled by the single 
component in each subset.  The black arrows indicate thalamic input, which is time-
locked to the stimulus as it is visible in the average.  Subsequent activation of the two 
response types is very different.  The late oscillations in channel one after 100 ms are 180 
degrees out of phase.  The red arrow in channel 11 at about 50 ms shows time-locked 
ultra-high frequency (UHF) oscillations in the early responses that are not present in the 
late subset.  (D) Wavelet analysis was performed on the residuals to characterize these 
oscillations and verify that the categorization indicated by the dVCA results is justified.  
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The residuals in the early subset show a burst of UHF oscillation between 42-57 ms with 
frequency ranging from 160-220 Hz.  (E) These oscillations are completely absent in the 
late subset. 
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Figure 8  Three components were estimated from the late subset.  
(A) The CSD profile of component 1 shows that it represents the granular response with 
some activation in the supragranular layers.  The drop line marks the onset of the 
response triggered by the thalamic input at 26 ms.  (B) Component 2 represents slow-
wave activity in the supragranular layers.  Its onset is considerably later at 37 ms.  (C) 
Component 3 also describes supragranular activation with a pulse-like activation 
followed by some slow wave activity.  The similarity in the laminar profiles of c2 and c3 
suggests that these responses are probably taking place in the same population of cells.  
Note however that these laminar profiles are not identical as c3 displays some granular 
activation.  (D) The single-trial amplitude histograms as well as amplitude scatter plots 
are shown.  C1 shows very little amplitude variability, whereas that of c2 and c3, while 
comparable, are not equal.  The scatter plot of c2 and c3 amplitudes are correlated with 

 ( ).  (E) The single-trial latency histograms and scatter plots are shown. 
Note that the slow-wave activity in c2 shows great latency variability.  The scatter plot of 
c1 and c2 latencies shows some correlation at 

495.0=r 710−<p

327.0=r  ( 001.0<p ).  (F) These scatter 
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plots show the relationship between c1 amplitudes and c1 and c2 latencies with r   
( ) and  ( ), respectively. 

297.0=
002.0<p 483.0=r 710−<p
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